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Abstract—Ground-truth data is essential for VO (Visual Odome-
try) and SLAM (Simultaneous Localization and Mapping) quantita-
tive evaluation using e.g. ATE (Absolute Trajectory Error) and RPE
(Relative Pose Error). Many open-access data sets provide raw and
ground-truth data for benchmark purposes. The issue appears when
one would like to validate Visual Odometry and/or SLAM approaches
on data captured using the device for which the algorithm is targeted
for example mobile phone and disseminate data for other researchers.
For this reason, we propose an open source, open hardware ground-
truth system that provides an accurate and precise trajectory with
a 3D point cloud. It is based on LiDAR Livox Mid-360 with a
non-repetitive scanning pattern, on-board Raspberry Pi 4B computer,
battery and software for off-line calculations (camera to LiDAR
calibration, LiDAR odometry, SLAM, georeferencing). We show how
this system can be used for the evaluation of various the state of the
art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor
monocular VO/SLAM.

Keywords—Visual Odometry, LiDAR odometry, SLAM, georefer-
encing

I. INTRODUCTION

Rapid development of hand-held mobile mapping systems
[47] incorporating recent advances in SLAM (Simultaneous
Localization and Mapping) [53][57] allows the creation of
both accurate and precise 3D point cloud and the trajectory.
This trajectory can be considered as ground truth looking
from Visual Odometry and SLAM applications [55][35]. An
alternative approach could be a ground truth reference system
using robust visual encoded targets [29]. The limitation of
existing approaches is related either to the high complexity
of the mobile mapping system [52] or to the overall cost of
the solution. For these reasons, we proposed a novel open-
hardware mobile mapping system that is:
• hand-held,
• weight less than 1kg,
• LiDAR range up to 40m,
• affordable (open source, open hardware MIT license),
• indoor and outdoor,
• large scale, long-term data acquisition up to 5 hours of

continuous scanning with suggested velocity up to 8km/h,
• with the handler for a smartphone.

The contribution of this paper is also related to open-source
software that provides an alternative approach to e.g. g2o[22],
gtsam[21], manif[11], ceres [2]. Our aim was to minimize
the effort needed for software installation and interoperability
between different operating systems. The contribution is:
• camera to LiDAR calibration,
• LiDAR odometry,
• single session alignment,

• multiple session alignment with georeferencing.

Benchmarking [16] is very important for providing advan-
tages and disadvantages of the current state of the art. A great
impact was introducing ATE (Absolute Trajectory Error) and
RPE (Relative Pose Error) errors by [43]. Recent Hilti-Oxford
Dataset [58] provides an interesting approach for LiDAR
and Visual SLAM benchmarking. It has been collected on
construction sites as well as at the famous Sheldonian Theatre
in Oxford, providing a large range of difficult problems for
SLAM.

Ground truth data sources are crucial when looking from
quantitative and qualitative benchmarking points of view.
The dominant one in literature is Visual Odometry-SLAM
Evaluation 2012 KITTI [18] that directs the mainstream of
many types of research. The second great example is the
Hilti-Oxford dataset [58]: a millimeter-accurate benchmark for
SLAM. Most of the recent papers incorporate KITTI or/and
Hilti datasets for evaluation purposes. It is evident a rapid
growth of more and more sophisticated benchmarks for SLAM
applications [40]. Such an approach unfortunately introduces
an important gap between benchmark and real-live applica-
tions. This observation is supported by this paper showing
that it is not straight forward to take state of the art Visual
SLAM approach and to perform mobile mapping in e.g. typ-
ical office environment. Chosen algorithms: StellaSLAM[44],
ORBSLAM3[10] and DSO[14][51] have great performance on
widely used and accepted by academia benchmarks [16], [9].
Most of these datasets contain data derived from professional
cameras such as high fps global shutter and IMU. Such data is
typically tested in the mobile robotics domain. Unfortunately,
research in the area of smartphones requires a more flexible
approach since new devices appear each year. The SLAM
technology transition is rather challenging since most of the
approaches are not prepared for it. Especially, large resolution
cameras with rolling shutters are still an open research topic
[37][38][24].

A rationale behind our research is the fact that we are
demonstrating the bias of potential use of existing benchmarks.
In our case, state-of-the-art algorithms do not solve our real-
world task. We have chosen most easiest cases - mapping of
small indoor scenes. It means that the proposed methodology
can have a positive impact on the research community since
the required effort for ground truth data collection can be
drastically decreased. The contribution of this paper as is
follows:

• First, we analyzed existing ground truth systems.
• Second, we introduced open hardware and methodology



for 3D data collection.
• Third, we show ground truth accuracy assessment.
• Fourth, we show visual SLAM accuracy assessment using

state-of-the-art StellaSLAM, ORBSLAM3, and DSO.
• Finally, we conclude the paper with suggestions and

discuss future direction.

II. GROUND TRUTH SYSTEMS

Rapid growth of indoor ground truth data interest is ev-
ident [56], since it provides useful data for qualitative and
quantitative measures for SLAM applications. Cost-effective
camera-based ground truth for indoor localization is very
helpful [4] for performing preliminary tests. For outdoor a
typical approaches are a global positioning system [42] and
total stations [48]. Obtaining ground truth is a rather so-
phisticated procedure than easy technology to use. Moreover,
deployment of ground truth technology is not always possible,
especially in extreme environments [1], e.g. an analysis of
SLAM-based LiDAR data quality metrics for geotechnical
underground monitoring [17] is very important from safety
point of view. It is related with the work on affordable low-
cost handheld LiDAR-based SLAM systems [46]. Further
important limitation of the ground truth data source is its
accuracy and precision [54]. In most of SLAM applications
[13] it seams that we do not need a millimeter accuracy
to conduct qualitative and quantitative evaluation. Hence, a
centimeter level accuracy is sufficient and it can be obtained
with many existing technologies such as Terrestrial Laser
Scanner [35],[12]. Such accuracy is also provided by GPS,
GNSS receivers with Real Time Kinematics (RTK) [7] which
is the most popular technique to collect ground truth data in
open-sky outdoor environments [8]. We distinguish following
satellite positioning systems, 1: Global Navigation Satellite
Systems (GNSS), GPS (Global Positioning System, United
States), GLONASS (GLObal Navigation Satellite System,
Russian Federation), Galileo (European Global Navigation
Satellite Systems Agency (GSA)), BeiDou (approximately
translated to “Northern Dipper”, People’s Republic of China),
IRNSS (Indian Regional Navigation Satellite System, India)
and QZSS (Quasi-Zenith Satellite System, Japan). It is also
possible to process such data with PPP (Precise Point Posi-
tioning) [45]. PPP relies on carrier-phase measurements as the
primary observable to model or estimate effects for centimetre-
level resolution. We can incorporate SLAM techniques to
improve this data even assuming continent-scale [5], thus opti-
mizing multiple trajectories decreases overall data uncertainty
and increases the accuracy.

Mobile mapping systems incorporates LiDAR technology
for 3D measurements [26]. Instead of LiDAR multi beam
technology non-repetitive scanning patterns [32] are recently
investigated since this functionality provides 99% coverage
of the surrounding environment even without motion [28].
Affordable non-repetitive scanning pattern mobile mapping
systems are currently state-of-the-art for building low-cost
ground truth systems. It might be possible that solid-state
LiDARs [27] will provide even more affordable applications.
There are plenty of commercial ground truth systems in the

TABLE I: Commercial ground truth systems
Method Hardware Approximate Cost Reference

Spatio-Temporal Alignment Leica MS50 laser tracker and scanner,
Vicon 6D motion capture system

19,500 USD
https://califfsurveying.com/product/leica-nova-ms50 [9]

Optical Motion Capture 16 infrared OptiTrack Flex13 cameras 16 x 1,099 USD = 17,584 USD
https://optitrack.com/cameras/flex-13/buy.html [39]

Optical Motion Capture 18 cameras OptiTrack Prime 41 18 x 6,499 USD = 116,982 USD
https://optitrack.com/cameras/prime-41/ [33]

Iterative Closest Point on Point cloud Laser scanner Leica BLK360 25,900 USD
https://shop.leica-geosystems.com/leica-blk/blk360/buy [35]

Time of Flight / Multiple Frequency Phase-shift TOPCON GT1205 37,000 USD
https://surveyingsupplies.com/products/gt-series-total-station-kits [34]

GPS South Galaxy G9 Rover Set C4,630
https://globalgpssystems.com/gps-receivers/

GPS South Galaxy G9 C2,995
https://globalgpssystems.com/gps-receivers/

GPS EFIX F8 Rover set C6,495
https://globalgpssystems.com/gps-receivers/

ToF laser 3D scanner 65,000 USD
https://www.artec3d.com/portable-3d-scanners/

ToF Our 1,000 USD
url: anonymized due to double blind review

market since benchmarking is crustal both from academic and
industrial points of view. Table I shows some of the ground
truth systems that are extensively used by many researchers
[9], [39], [33], [35], [34]. It can be seen that the cost is
multiple times larger than our approach, but those systems
provide much better accuracy and precision.

III. OPEN-HARDWARE FOR 3D DATA COLLECTION

Figure 1 shows the open-hardware hand-held mobile
mapping system. Technical details are available at (url:
anonymized due to double blind review). The open source
project for off-line 3D data processing is available at (url:
anonymized due to double blind review). It is compatible with
ROS thanks to (url: anonymized due to double blind). The
system is composed of LiDAR Livox Mid-360. It is capable
of collecting data on USB flash memory. It is equipped with
an onboard RaspberryPi4B computer. It can work for more
than 5 hours and the weight is around 1kg.

A. Methodology

Ground truth data processing is composed of four modules:
• Camera to LiDAR calibration,
• LiDAR odometry,
• single session refinement,
• multiple sessions refinement with georeferencing.

Camera to LiDAR calibration is implemented based on funda-
mental paradigm in computer vision [19] - re-projection error.
LiDAR 3D point - image pixel pairs form optimization prob-
lem that calculates extrinsic parameters ([R, t]LiDAR←camera)
of the system. LiDAR odometry is composed of highly
coupled multiple view normal distributions transform with
pose graph SLAM incorporated for preserving motion model
derived from IMU processed with Madgwick Orientation Filter
[30], [23]. Each consecutive batch of 20 poses is processed
within the assumption of the sliding window. This approach
differs from classic pair-wise matching with pose graph SLAM
[49]. Thus, in our approach relative pose constraints (20
consecutive poses) are highly coupled with multi-view normal
distributions transformed as a single optimization routine.
Once the initial trajectory is calculated it is possible to perform
consistency procedure that makes the trajectory smooth.

B. Camera LiDAR synchronization

Both devices used in the setup have different clocks which
requires synchronization between them. There are at least two
ways in which we can address synchronization problem:



Fig. 1: Open-hardware for 3D data collection composed of
LiDAR: Livox Mid-360, on board computer: RaspberryPi4B,
battery and tripod.

1: Synchronize system clocks of both devices and use
those system clocks as basis for time stamping sensor
data. This is the simplest solution which can use existing
clock synchronization methods and protocols, such as
NTP (network time protocol) and PTP (precision time
protocol). The former is available out-of-the-box in many
platforms, such as Android itself (in fact Android uses NTP
to synchronize system clock over internet). On Unix-like
operating systems NTP daemons are also easily obtainable
and configurable. The precision of NTP synchronization
varies and is dependant on network architecture. Generally,
one can expect synchronization accuracy below 100 ms (less
in small LAN networks) (https://www.ion.org/publications/
abstract.cfm?articleID=14186, https://www.ntp.org/ntpfaq/
NTP-s-algo/#5131-how-accurate-will-my-clock-be). PTP
is a much more accurate solution, easily guaranteeing
microsecond accuracy, however it requires more effort in the
setup and puts more requirements on network adapters (such
as software or hardware timestamping). As this protocol is
not available out-of-the-box on Android, we didn’t consider
it further.

2: Synchronize data timestamps based on IMU data. Most
API used for fetching data (such as Android Camera2 or
Motion sensors API) do not provide timestamps associated
with system clock, but rather some internal monotonic clock
(e.g. time since booting up the system). When one uses raw
timestamps provided by the device it is pointless to use time

synchronization protocols, as those affect system clock. In
such cases direct data synchronization is required. In our
experiments we found that best results are achieved through
IMU data synchronization (especially via acceleration). This
method can achieve decent results due to high frequency and
low latency of IMU data. It is however hard to automate and
requires good IMU data such that synchronization based on
movement patterns is possible.

In our setup we opted to use NTP-based synchronization,
which allowed us to achieve synchronization accuracy below
50 ms. With average speeds not exceeding 0.6 m/s this
means that inaccuracy due to synchronization is below 3
cm, which is enough for datasets presented here. NTP-based
synchronization was chosen as it was the simplest method to
setup and automate.

C. Camera to LiDAR calibration

We use built-in Camera2 API to get intrinsic parameters for
the camera. It is a deliberate choice over manual calibration.
Our goal is to test the algorithms on out-of-the-box devices,
such as in commercial applications, where user is not sup-
posed to calibrate the device. Relative camera to LiDAR pose
estimation is addressed by solving two subproblems: First a
feature matching problem that seeks to establish putative 2D-
3D correspondences, and then a Perspective-n-Point problem
that minimizes, w.r.t. the camera pose, the sum of so-called
Reprojection Errors (RE). Feature matching problem is solved
by manual procedure, where end-user finds at least 5 pairs
2D (camera image) - 3D (3D point cloud) correspondences.
These pairs form the Perspective-n-Point problem [50] that is
minimized with Gauss-Newton optimization routine.

D. Normal Distributions Transform

Normal Distributions Transform [31] is an alternative tech-
nique to Iterative Closest Point [6],[20] for point cloud data
registration and it is available in a well-known Point Cloud
Library [36] open source project. It is limited to the pair-
wise matching of two-point clouds, thus a contribution of
the proposed research is a novel approach to NDT enabling
fusing it with pose graph SLAM. The key element of the
NDT is the representation of the data as a set of normal
distributions organized in the regular grid over 3D space.
These distributions describe the probability of finding a 3D
point at a certain position. The advantage of the method
is that it gives a smooth representation of the point cloud,
with continuous first and second-order derivatives. Thus, stan-
dard optimization techniques described in this paper can be
applied. Another advantage of NDT over ICP is its much
less computational complexity since the consumptive nearest
neighbourhood search procedure is not needed. Authors of [3]
also elaborate on this advantage. The 3D space decomposition
into the regular grid introduces some minor artefacts, but in
a presented experiment it is a negligibly small disadvantage.
For each bucket from a regular grid containing a sufficient
number of measured points, NDT calculates the mean given
by the equation (1) and the covariance given by the equation

https://www.ion.org/publications/abstract.cfm?articleID=14186
https://www.ion.org/publications/abstract.cfm?articleID=14186
https://www.ntp.org/ntpfaq/NTP-s-algo/#5131-how-accurate-will-my-clock-be
https://www.ntp.org/ntpfaq/NTP-s-algo/#5131-how-accurate-will-my-clock-be
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surface within the range of the bucket. It describes the position
µ of the surface as well as its orientation and smoothness given
by Σ. Let Ψ([R, t]3×4W←LiDAR,P
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Thus, the NDT optimization problem is defined as the maxi-
mization of the likelihood function given in equation (5).

[R, t]3×4,∗W←LiDAR = max
[R,t]W←LiDAR

N∏
k=1

p(Ψ([R, t]3×4W←LiDAR,P
l
m))

(5)
Furthermore, the optimization problem is equivalent to the
minimization of the negative log-likelihood given in equation
(6).

[R, t]3×4,∗W←LiDAR = min
[R,t]3×4

W←LiDAR

−
N∑

k=1

log
(
p(Ψ([R, t]3×4W←LiDAR,P

l
m))

)
(6)

NDT implementation similar to ICP uses using point-to-point
observation equation. The only difference is that an informa-
tion matrix Ω is calculated as an inverse of the covariance
matrix from equation (2).

The disadvantage of multi-view NDT is the fact that narrow
obstacles such as walls observed from neighbouring rooms
can converge to a single entity (the width of the wall should
not converge to 0). To discriminate obstacles we remove
such observations that correspond to different viewpoints. It
means that the flat surface of one room is not converging to
this flat surface observed from the neighbouring room. It is
implemented as a normal vector geometric check.

E. Single session refinement

Classic pose graph SLAM[22] is incorporated to optimize
manually chosen pairwise matches. Thus, this semi automatic
process uses loop closure edges chosen by end user to optimize
graph composed of trajectory edges, loop closure edges and
motion model. The result is reduced consecutive error of the
LiDAR odometry.

(a) Ground truth data set (TLS Z+F IMAGER 5010),

(b) Maximum vertical deviation.

(c) Maximum horizontal deviation.

Fig. 2: Quantitative comparison of our mobile mapping system
to ground truth obtained with terrestrial laser scanner survey.

F. Multiple session refinement with georeferencing

Multiple trajectories can be organized into the project. Only
one trajectory can be treated as ground truth (obtained e.g. with
geodetic survey). Other trajectories will be aligned together
and to ground truth based on loop closure edges.

IV. GROUND TRUTH ACCURACY ASSESSMENT

We performed a quantitative comparison to ground truth
data - underground INDOOR scenario 20 × 90 [m]. It is shown
in figure 2. Ground truth data were collected with terrestrial
laser scanner survey TLS Z+F IMAGER 5010 that provides
point cloud with the milliliter accuracy and precision [41].
We observed that the maximum vertical deviation is less than
10cm and the maximum horizontal deviation is 3cm. This is a
satisfactory result that is sufficient, moreover, further investiga-
tion on global accuracy is not our main focus since our LiDAR
provides 2cm accuracy on a distance 20m (documentation is
available here https://www.livoxtech.com/mid-360).

V. VISUAL SLAM ACCURACY ASSESSMENT

For the demonstration of the functionality of the proposed
affordable ground truth data system, we performed data collec-
tion for several INDOOR scenarios. We evaluated DSO https:
//github.com/JakobEngel/dso [14][15], OpenVSLAM https://
github.com/stella-cv/stella vslam [44] that is inspired by ORB
SLAM https://github.com/UZ-SLAMLab/ORB SLAM3 [10].

https://www.livoxtech.com/mid-360
https://github.com/JakobEngel/dso
https://github.com/JakobEngel/dso
https://github.com/stella-cv/stella_vslam
https://github.com/stella-cv/stella_vslam
https://github.com/UZ-SLAMLab/ORB_SLAM3


TABLE II: Absolute Trajectory Error

Experiment LiDAR DSO STELLA-VSLAM ORB-SLAM3
1 reference 0.164169 0.0923437 0.184776
2 reference 0.109849 0.268346 0.290233
3 reference 0.0634539 0.0371597 0.0489425

We selected these three open-source visual SLAM implemen-
tations since they can be implemented in smartphones with
minimal effort.

Real-world datasets were recorded using SAMSUNG
GALAXY S23 SM-S911B device with ISOCELL GN3
(S5KGN3) electronic rolling shutter sensor locked at 30 FPS
as a sequence of corresponding YUV-420-888 images (sep-
arate image per YUV component stream) further combined
into 8 bit BGR images which after undistortion create a final
dataset. Camera characteristics like sensor intrinsic parameters
and lens distortion coefficients were retrieved from Android
camera API and downscaled from native camera resolu-
tion to resolution at which the sequence was recorded and
processed using state-of-the-art SLAM frameworks. Before
dataset recording started camera was configured so chromatic
aberration correction, distortion correction, auto white balance,
auto-focus, and color effects were disabled.

Table II collects all ATE (Absolute Trajectory Error) results
according to methodology from [43]. This quantitative mea-
sure compares trajectory to ground truth. It can be seen that
DSO performs best, but there is an issue with this statement
since figure 5 shows the failure of all methods. An interesting
observation is that OpenVSLAM (current name StallaVS-
LAM) performs better than its successor ORB SLAM3. So,
it is beneficial to refactor existing implementations (Authors
of [44] mainly refactored work of [10]). This very simple
experiment provides significant observations:
• state-of-the-art visual SLAM algorithms are not out-of-

the-box solution for smartphone cameras without IMU,
• ground truth system provides sufficient data for quantita-

tive and qualitative benchmark,
• simple methodology incorporating ATE is not sufficient

for correct research statements (it was also observed in
[25]).

VI. CONCLUSION

This paper shows how to build a system for ground truth
data collection for machine vision, robotics and other mobile
mapping applications. It can be used for qualitative and quan-
titative SLAM evaluation. This research drastically reduces
the cost of benchmark data generation, thus many researchers
instead of focusing mainly on available datasets will generate
new ones. Such an approach removes the existing limitation
related to existing benchmarks typically focused on high-end
sensors. For this reason, we proposed a novel and affordable
ground-truth system that provides an accurate and precise
trajectory with a point cloud. It is based on LiDAR Livox
Mid-360 with a non-repetitive scanning pattern with affordable
IMU, on-board Raspberry Pi 4B computer, battery and soft-
ware for off-line calculations (LiDAR odometry, SLAM). The
software is based on an alternative approach e.g. g2o, GTSAM,

(a) Perspective view of ground truth trajectory.

(b) Ground truth, StellaSLAM, ORBSLAM3 and DSO
trajectories.

Fig. 3: Experiment 1.

manif or Ceres since this lightweight implementation does not
require any installation on Linux or Windows. This software is
dedicated also to non-programmers. We have shown how this
system can be used for the evaluation of various the state of the
art algorithms (Stella SLAM, ORB SLAM3, DSO). An open-
hardware measurement device specification is available at (url:
anonymized due to double blind review) We hope this research
will boost machine vision experiments since the proposed
solution provides ground truth almost for all scenarios. The
project has a rapidly growing community and it addresses the
most significant issues with ground truth: cost-effectiveness,
scale, ergonomic design, simplicity and interoperability. The
accuracy in typical indoor scenarios does not exceed 5cm
and the precision 3cm. It is sufficient for qualitative and
quantitative SLAM evaluation which was demonstrated in this
paper.



(a) Perspective view of ground truth trajectory.

(b) Ground truth, StellaSLAM, ORBSLAM3 and DSO
trajectories.

Fig. 4: Experiment 2.
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